Multilocus analysis of variation and speciation in the closely related species Arabidopsis halleri and A. lyrata.

نویسندگان

  • Sebastián E Ramos-Onsins
  • Barbara E Stranger
  • Thomas Mitchell-Olds
  • Montserrat Aguadé
چکیده

Nucleotide variation in eight effectively unlinked genes was surveyed in species-wide samples of the closely related outbreeding species Arabidopsis halleri and A. lyrata ssp. petraea and in three of these genes in A. lyrata ssp. lyrata and A. thaliana. Significant genetic differentiation was observed more frequently in A. l. petraea than in A. halleri. Average estimates of nucleotide variation were highest in A. l. petraea and lowest in A. l. lyrata, reflecting differences among species in effective population size. The low level of variation in A. l. lyrata is concordant with a bottleneck effect associated with its origin. The A. halleri/A. l. petraea speciation process was studied, considering the orthologous sequences of an outgroup species (A. thaliana). The high number of ancestral mutations relative to exclusive polymorphisms detected in A. halleri and A. l. petraea, the significant results of the multilocus Fay and Wu H tests, and haplotype sharing between the species indicate introgression subsequent to speciation. Average among-population variation in A. halleri and A. l. petraea was approximately 1.5- and 3-fold higher than that in the inbreeder A. thaliana. The detected reduction of variation in A. thaliana is less than that expected from differences in mating system alone, and therefore from selective processes related to differences in the effective recombination rate, but could be explained by differences in population structure.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Does Speciation between Arabidopsis halleri and Arabidopsis lyrata Coincide with Major Changes in a Molecular Target of Adaptation?

Ever since Darwin proposed natural selection as the driving force for the origin of species, the role of adaptive processes in speciation has remained controversial. In particular, a largely unsolved issue is whether key divergent ecological adaptations are associated with speciation events or evolve secondarily within sister species after the split. The plant Arabidopsis halleri is one of the ...

متن کامل

Evidence for Adaptive Introgression of Disease Resistance Genes Among Closely Related Arabidopsis Species

The generation and maintenance of functional variation in the pathogen defense system of plants is central to the constant evolutionary battle between hosts and parasites. If a species is susceptible to a given pathogen, hybridization and subsequent introgression of a resistance allele from a related species can potentially be an important source of new immunity and is therefore expected to be ...

متن کامل

Evidence of various mechanisms of Cd sequestration in the hyperaccumulator Arabidopsis halleri, the non-accumulator Arabidopsis lyrata, and their progenies by combined synchrotron-based techniques.

Arabidopsis halleri is a model plant for Zn and Cd hyperaccumulation. The objective of this study was to determine the relationship between the chemical forms of Cd, its distribution in leaves, and Cd accumulation and tolerance. An interspecific cross was carried out between A. halleri and the non-tolerant and non-hyperaccumulating relative A. lyrata providing progenies segregating for Cd toler...

متن کامل

The allopolyploid Arabidopsis kamchatica originated from multiple individuals of Arabidopsis lyrata and Arabidopsis halleri.

Polyploidization, or genome duplication, has played a critical role in the diversification of animals, fungi and plants. Little is known about the population structure and multiple origins of polyploid species because of the difficulty in identifying multiple homeologous nuclear genes. The allotetraploid species Arabidopsis kamchatica is closely related to the model species Arabidopsis thaliana...

متن کامل

Duplication of centromeric histone H3 (HTR12) gene in Arabidopsis halleri and A. lyrata, plant species with multiple centromeric satellite sequences.

Arabidopsis halleri and lyrata have three different major centromeric satellite sequences, a unique finding for a diploid Arabidopsis species. Since centromeric histones coevolve with centromeric satellites, these proteins would be predicted to show signs of selection when new centromere satellites have recently arisen. We isolated centromeric protein genes from A. halleri and lyrata and found ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Genetics

دوره 166 1  شماره 

صفحات  -

تاریخ انتشار 2004